Product and Technology
 Overview

2017

Contents

- Overview

Company Milestones/Global Locations/ Product Roadmap

- GreenMOS

SFGMOS

\square User Cases

Company Milestones

- 2008.09
- 2012.09
- 2013.08
- 2013.12
- 2014.01
- 2015.06
- 2015.11

Oriental Semiconductor is founded. The registered capital is 35.2MRMB. Located in SISPARK of Suzhou, Jiangsu.
fabricated the world first Semi-Floating Gate transistor (SFGT) published the achievement of SFG Transistor on 《Science》Journal successfully developed the test chip using SFGT with SMIC novel soft-trench SJMOS - GreenMOS enters mass production China $1^{\text {st }} 78 \mathrm{~A} 650 \mathrm{~V}$ GreenMOS released to EV charger customer Start production of world' $s 1^{\text {st }}$ SFG-transistor: SFGMOS

Global Locations

Oriental
SEMICONDUCTOR

Product Portfolio

Contents

- Overview

GreenMOS

High Voltage (500-900V)SJ MOSFET for AC-DC Conversion Applications

- SFGMOS

- User Cases

Applications

Applications :

- LED lighting
- adapters
- Quick charger
- TV power
- PC power
- Server power

■ UPS
■ invertor

- EV charging pile
- Industrial power

ORIENTAL
SEMICONDUCTOR

Best-in-Class FOM (Rdson*Qg)

ORIENTAL
SEMICONDUCTOR

Innovative GreenMOS Technology

GreenMOS ${ }^{T M}$ 与VDMOS特征导通电阻对比

GreenMOS Key Features ：

－Soft－trench technology：Better EMI Performance
－Extremely low Qg：reduce driver IC output，extremely low switching loss to enable high efficiency and high speed applications．
－High reliability，high uniformity
ORIENTAL
SEMICONDUCTOR

Key Feature 1: Soft Trench improves EMI

Oriental
SEMICONDUCTOR

Key Feature 1: Improve EMI at MOSFET level

Customer's PMIC for 18W adapter


```
4A VDMOS
```

4A VDMOS
DIP, EMI pass

```
DIP, EMI pass
```


Competitor' s 2A SJMOS
SOP, EMI over spec

2A GreenMOS
SOP, EMI pass

Novel technology: EMI suppression by soft trench-SJMOS technology (patented)
GreenMOS improved switching smoothness, enabled system EMI performance as good as VDMOS. With its small die advantage, customer reduced package cost by 50%.

Key Feature 2 : Extremely low FOM

parameters	unit	conditions	GreenMOS	IFX Co*Imos C6	Competitor B
			OSG65R900F	XXX65R900	XXX65R900
$V(B R) D S S$	V	VGS $=0 \mathrm{~V}, \mathrm{ID}=250 \mu \mathrm{~A}$	682	680	662
VGS(th)	V	ID $=250 \mu \mathrm{~A}, \mathrm{VGS}=\mathrm{VDS}$	3	3.3	3.3
RDS(on)	Ω	VGS =10V, ID =2A	0.72	0.87	0.71
Ciss	pF	VGS $=0 \mathrm{~V}, \mathrm{VDS}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	243	280	460
Coss			26	41	45
Crss			1.5	1.7	3.5
Qg	nC	$\begin{gathered} \text { VDD }=480 \mathrm{~V}, \text { ID }=5 \mathrm{~A}, \mathrm{VGS} \\ =10 \mathrm{~V} \end{gathered}$	8	15	13.2
Qgs			1.6	2.5	3
Qgd			3.9	9	6.2
trr	ns	$\begin{gathered} V R=300 \mathrm{~V}, \mathrm{IF}=5 \mathrm{~A}, \mathrm{diF} \\ / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{gathered}$	139	144	165
Qrr	$\mu \mathrm{C}$		0.81	0.92	1.1
Irrm	A		10.4	10.1	12.2

ORIENTAL

Key Feature 2 : Extremely low FOM

Extremely low FOM : 2 MHz switching!

8A GMOS Vgs waveform

12A GaN Vgs waveform

Oriental
SEMICONDUCTOR

Key Feature 3: Reliability and Uniformity

Typical GreenMOS wafer map

High Yield -> High Reliability

Mass production proven reliability and stability

Key Feature 3: Reliability and Uniformity

\#	Reliability	Condition	Time	Sample Size	Standard	Fail/Tested
1	Pre-condition	$192 \mathrm{hr} 30^{\circ} \mathrm{C} / 60 \%$ RH +3 cycle reflow @ $260^{\circ} \mathrm{C}$	-	77	JESD22-A113	0/77
2	TC	$-65^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$,	500 cycle	77	JESD22-A104	0/77
3	PCT	$\begin{gathered} 121^{\circ} \mathrm{C}, 29.7 \mathrm{psi}, \\ 100 \% \mathrm{RH} \end{gathered}$	96h	77	JESD22-A102-C	0/77
4	UHAST	$\begin{gathered} 130^{\circ} \mathrm{C}, 33.3 \text { psi, } \\ 85 \% \mathrm{RH} \end{gathered}$	96h	77	JESD22-A110	0/77
5	THT	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	500h	77	JESD22-A101	0/77
6	Solder ability	$5 \pm 0.5 \mathrm{sec}$	-	5	JESD22-B102D	0/5
7	HTST	$150^{\circ} \mathrm{C}$	500h	77	JESD22-B102D	0/77
8	HTRB	$150^{\circ} \mathrm{C}, \mathrm{V}_{\text {DS }}=480 \mathrm{~V}$	500h	77	JESD22-A108C	0/77
9	HTGB	$150^{\circ} \mathrm{C}, \mathrm{V}_{\text {GS }}=30 \mathrm{~V}$	500h	77	JESD22-A108C	0/77

Parameter.	Pre-condition.	тс.
BVoss:		
Rosiom,		
Vaster		
vsas .		

Parameter	Pre-condition.	тc.
Evoss.		
Rostan):		
$V_{\text {ssista }}$		
vso.		

$$
\begin{aligned}
& \text { 0/77 fail @ } 500 \text { hour } \\
& \text { HTRB, HTGB } \\
& \text { 0/77 fail @ } 1000 \text { hour } \\
& \text { HTRB, HTGB }
\end{aligned}
$$

Oriental
SEMICONDUCTOR

GreenMOS Flagship: 80A GreenMOS with FRD

	GreenMOS 65R038HZ	IFX 65R041CFD	TOSH 65R041W5	Fairch**d 65R041F
Trr (ns)	190	193	230	250
BV (V)	741	740	690	720
Rdson (mohm)	32	34	36	38
Qg (nC)	172	260	172	252
FOM (ohm*nQ)	5.5	8.84	6.19	9.58

- Rdson at the same level
- GreenMOS has the lowest Qg and Ogd, reduces dynamic loss by 40%
- GreenMOS has the best FOM
- Overall : GreenMOS/IFX > TOSHI** > Fairch**d

GreenMOS Product Portfolio

$500 \mathrm{~V} / 550 \mathrm{~V} / 600 \mathrm{~V} / 650 \mathrm{~V} / 800 \mathrm{~V}$ super-junction MOSFET (GreenMOS mass production) ; 1A (3.5ohm) 2A (2.0ohm) 3A (1.5ohm) 4A (1.0 ohm) 5A (0.8 ohm) 8A (0.5 ohm) 11A (0.33 ohm) 15A (0.23 ohm) 20A (0.15 ohm) 40A (90 mohm) 60A (60 mohm) 78A (36 mohm) 80A (30 mohm)	For detail specifications: http://www.orientalsemi.com/english/?p=50 EV charger, Server Power, Communication Power Supplies

GreenMOS	Infineon	Fairchild	ST	Toshiba	Magnachip	Planar MOS
OSG55R580x	-	-		-	-	-
OSG50R500F	-		STFIICN50U			
OSG55R380F	-	-	STDI2N50M2	-	MMDS0R380PRH	
OSG55R290F	-	-	STDI6N50M2	-	MMDS0R280PRH	
OSG55R190F	-	-	STDI8N55M5	-	\cdots	
OSGS5R140x	-	-	STDI8N55M5	-	-	
OSG55R160Fz	-	-	STDI8N55M5	-	.	
OSG60R2K8x	1Px6083k3C6					3N60
OSG60R2K2x				-		4 N 60
OSG60R1K8x	$1 \mathrm{P} \times 60 \mathrm{R2K}$		STT3NM60N			4N60/5N60
OSG60R1K2x	${ }_{\text {\|Px60R1K }}$	FCP4N60	STxVN60M2			6N60/7N60
OSG60R900x	1Px60R950C6	-	STx7N60M2 STx9N60M2	TK560\%	MM×608900PRH	8N60/9960/10N60
OSG60R670x	IPx60R750E6		STx10N60M2	TK6x60w	MM×60R750PTH	8N60/9 $\mathrm{N}_{60 / 10 \mathrm{~N} 60}$
OSG60R580x	$1 \mathrm{P} \times 60 \mathrm{R} 600$	FCX7N60NT	STx10N60M2	TK7x60w	MM×60R580PTH	12 N60
OSG60R380x	1 Px 60 R 380	$\begin{aligned} & \text { FCCPNOGON } \\ & \text { FC } \times 380 \text { N } \end{aligned}$	STx13N60M2 STX13N60M2	tк10x60w	MM×608360PTH	$15-20 \mathrm{~N} 60$
OSG60R260x	\|P600R280	FCxi3ngont	Sx $\times 18 \mathrm{N6} 6 \mathrm{M} 2$	TK12860W	MM×60R290PTH	
OSG60R180x	IP600R180	FC×22N60N FCx170N60 FCX190N60	STx24N60M2	TK16×60W TK20x60W	MM×60R190PTH	-
OSG60R150x	${ }_{1 \times 608160}$	FCx130N60	ST×28N60M2	TK20x60 ${ }^{\text {a }}$	MM×60R1 1 5PTH	
OSG60R092x	\|Px60R099CP	FCx 3 SN60N	STx00N60M2	TK31860W		
OSG60R092x]	-	FCA36N6ONF FCP 104N6OF	STX4NS600M2AG STW43NM $60 N D$	TK31 $\times 60 \mathrm{~W} 5$	-	-
OSG60R070x	IPW60RO70C6	FCH47N60N	STW48N60M2	TK39N60X	MMQ60ROTOPTH	
OSG60R070x		FCH072N60F	STW48NM60N	TK39N60W5		
OSG60R069H	1Px60R070C6	FCH47N6ON FCHOZ2N6O	STx48N60M2	тK39x60w	Mмх608070Рт	-
OSG60R069Hz	SPW47N60CFD	$\begin{aligned} & \mathrm{FCx} 47 \mathrm{~N} 60 \mathrm{NF} F \\ & \mathrm{FC} \times 4 \mathrm{~N} 60 \mathrm{~F} \end{aligned}$	STW48N600M2	TK39860w5	-	-
OsG60R040H	${ }^{1 P \times 600041 P 6}$	$\begin{aligned} & \text { FCA76N60N } \\ & \text { FCH043N6O } \end{aligned}$	STW70N60M2	TK62x60w	-	-
OSG60R041Hz	-	FCH76N60NF	STW70N60DM2 STW55NM60ND	${ }^{\text {TK622x60w }}$	-	-
OSG65R2K4x	-	-		-	-	4N65
OSG65R2Kx		-				4N65/5N65
OSG65R1K4x	\|Px6581K4C6	-	STB6N65M2	TK5665W	-	6N65/7N65
OSG07N65F	IPS65R1K0CE		STFFN65M2	TK6Q65W		7N65
OSG65R900x	IPx5R950C6	-	STx9 6 6M2	TK6865W	-	8N65/9965/10N65
OSG65R900xE						
OSG658760x		-	STx9HN65M2	TK7x65W	-	8N65/9065/10N65
OSG65R580x	$1 \mathrm{P} \times 65 \mathrm{R} 60006$	-	ST88N65M5	TK9665W	-	12N65
OSG65R580xE		-			-	
OSG65R380x	1Px658380x	-	STx16N65M2	TK11 $1 \times 5 \mathrm{~W}$	-	15-20N65
OSG65R460xZ	IPD658R420CFD	\square			-	
OSG65R34027	IP6658310CFD	FCPF380N65FLI		TK14A65W5		
OSG65R290x	${ }_{\text {1Px } 6 \text { R280C6 }}$	-	STx16N65M5	TK14×65W	-	.
OSG65R290XE						
OSG65R220xz	\|P865R 190CFD	-		TK17A65W5		
OSG65R200x	IPx5819006	-	STx20N60M5	TK17x65W	MM×65R190PTH	
OSG65R099x	1Px65R09C6		STx40N65M2	TK28x65W	\cdots	-
OSG65R099x		FCH1 10N65F	STW50N65DM2AG	TK35x60W5	-	
OSG65R069\%	1Px65R074C6 IPx65R070C6	FCB0700N653	STx42N60W5	TK35665W	-	-
OSG65R069HZ	PPW6SR880CFD	-	STW56N6SDM2		-	-
OSG65R042H	IPx58037C6		STXW69N65M5	TK49865W		
OSG65R041HZ	PWW65R041CFD	FCH041N65F	STW6SN65DM2AG	TK49665 5	-	-
OSG65R035Hz		FCX76N60NF				
OSG65R038HZ	PWW6R041CFD	FCH041 ${ }^{\text {d }}$ 6F		-	-	-
OSG70R2K6x						
OSG70R1K4x	$\begin{gathered} \text { STO5NT0 } \\ \text { Px } \times \text { PORIKCCE } \end{gathered}$	-	-	-	MM×70R1K4PRH	4N70
OSG70R1kx	$\begin{gathered} \text { SSO7N70 } \\ \text { IP×70R950CE } \end{gathered}$	-	STP9Nk702	-	Mмх70R9000тH	5N70
OSG70R750x		-	STP10NK702FP	-	MM $\times 7$ ORR 500 PRH	-
OSG70R500x	IPx70R600CE	-		-		-
OSG70R350x		-		-	MM×70R380PTH	
OSG80R4Kx	IPD80R445P7		STFF3N80K5			3N80
OSG80R1K4x	IPABORIK4CE	-	STILNB0K5			3N80
OSG80R11kx	IPABORIKOCE	-	STU8880K5	${ }_{\text {TK7A ABOW }}^{\text {TK10ab }}$	MMF80R900PTH	
OSG80R650x	${ }_{\text {IPr80R } 500 C E}$	-		Tk10A80W	MM $\times 80$ R650PTH	8N80
OSG80R460x	${ }_{\text {SPPIIIV80C3 }}$	FCB290N80	STW13NBOK5 STW23NBOK5	${ }_{\text {TK12A80W }}^{\text {TK17ABOW }}$	MMF80R 400PH	-
OSG80RO699	SPW55NB0C3	$\mathrm{FCHO}^{\text {cons }}$	STW6SN80K5			-
OSG90R1K2x	PP190R1K2C3			-	-	-

GreenMOS Product List

Class	Product Name	Package	Vdss(V)	Id(A)	Rdson_typ(Ω)	Rdson_max(彷
500/550V	OSG55R580A	TO251	550	8	0.5	0.58
	OSG55R580D	TO252	550	8	0.5	0.58
	OSG55R580F	TO220F	550	8	0.5	0.58
	OSG55R580P	TO220	550	8	0.5	0.58
	OSG50R500F	TO220F	500	9	0.45	0.5
	OSG55R380F	TO220F	550	11	0.35	0.38
	OSG55R290F	TO220F	550	15	0.26	0.29
	OSG55R190F	TO220F	550	20	0.16	0.19
	OSG55R140F	TO220F	550	23	0.11	0.14
	OSG55R140H	TO247	550	23	0.11	0.14
	OSG55R140P	TO220	550	23	0.11	0.14
	OSG55R140R	TO3P	550	23	0.11	0.14
	OSG55R160FZ	TO220F	550	23	0.13	0.16
600 V	OSG60R2K8A	TO251	600	1.5	2.5	2.8
	OSG60R2K8D	TO252	600	1.5	2.5	2.8
	OSG60R2K2A	TO251	600	2	1.9	2.2
	OSG60R2K2D	TO252	600	2	1.9	2.2
	OSG60R2K2F	TO220F	600	2	1.9	2.2
	OSG60R2K2AS	TO251	600	2.5	1.6	2.2
	OSG60R2K2DS	TO252	600	2.5	1.6	2.2
	OSG60R2K2FS	TO220F	600	2.5	1.6	2.2
	OSG60R1K8A	TO251	600	3	1.5	1.8
	OSG60R1K8D	TO252	600	3	1.5	1.8
	OSG60R1K8F	TO220F	600	3	1.5	1.8
	OSG60R1K2A	TO251	600	4	1	1.2
	OSG60R1K2D	TO252	600	4	1	1.2
	OSG60R1K2F	TO220F	600	4	1	1.2
	OSG60R900A	TO251	600	5	0.66	0.9
	OSG60R900D	TO252	600	5	0.66	0.9
	OSG60R900F	TO220F	600	5	0.66	0.9
	OSG60R670A	TO251	600	7	0.6	0.67
	OSG60R670D	TO252	600	7	0.6	0.67
	OSG60R670F	TO220F	600	7	0.6	0.67
	OSG60R580A	TO251	600	8	0.5	0.58
	OSG60R580D	TO252	600	8	0.5	0.58
	OSG60R580F	TO220F	600	8	0.5	0.58
	OSG60R580P	TO220	600	8	0.5	0.58
	OSG60R380A	TO251	600	11	0.33	0.38
	OSG60R380D	TO252	600	11	0.33	0.38
	OSG60R380F	TO220F	600	11	0.33	0.38
	OSG60R3801	TO262	600	11	0.33	0.38
	OSG60R380P	TO220	600	11	0.33	0.38
	OSG60R260A	TO251	600	15	0.23	0.26
	OSG60R260D	TO252	600	15	0.23	0.26
	OSG60R260F	TO220F	600	15	0.23	0.26
	OSG60R260P	TO220	600	15	0.23	0.26
	OSG60R180F	TO220F	600	20	0.15	0.18
	OSG60R180H	TO247	600	20	0.15	0.18
	OSG60R180K	TO263	600	20	0.15	0.18
	OSG60R1801	TO262	600	20	0.15	0.18
	OSG60R180P	TO220	600	20	0.15	0.18
	OSG60R150F	TO220F	600	23	0.12	0.15
	OSG60R150H	TO247	600	23	0.12	0.15

Class	Product Name	Package	$\mathrm{Vdss}(\mathrm{V})$	$\operatorname{ld}(\mathrm{A})$	Rdson_typ(Ω)	Rdson_max(Ω)
600 V	OSG60R150P	TO220	600	23	0.12	0.15
	OSG60R092F	TO220F	600	40	0.083	0.092
	OSG60R092H	TO247	600	40	0.083	0.092
	OSG60R092FZ	TO220F	600	40	0.083	0.092
	OSG60R092HZ	TO247	600	40	0.083	0.092
	OSG60R070F	TO220F	600	47	0.06	0.07
	OSG60R074FZ	TO220F	600	47	0.062	0.074
	OSG60R070H	TO247	600	47	0.06	0.07
	OSG60R074HZ	TO247	600	47	0.062	0.074
	OSG60R069H	TO247	600	53	0.06	0.069
	OSG60R069HZ	TO247	600	53	0.06	0.069
	OSG60R041 HZ	TO247	600	78	0.038	0.041
	OSG60R040H	TO247	600	78	0.035	0.04
650 V	OSG65R2K4A	TO251	650	2	2.2	2.4
	OSG65R2K4D	TO252	650	2	2.2	2.4
	OSG65R2K4F	TO220F	650	2	2.2	2.4
	OSG65R2KA	TO251	650	3	1.7	2
	OSG65R2KD	TO252	650	3	1.7	2
	OSG65R2KF	TO220F	650	3	1.7	2
	OSG65R1K4A	TO251	650	4	1.2	1.4
	OSG65R1K4D	TO252	650	4	1.2	1.4
	OSG65R1K4F	TO220F	650	4	1.2	1.4
	OSG07N65F	TO220F	650	4.5	1.0	1.2
	OSG65R900A	TO251	650	5	0.72	0.9
	OSG65R900D	TO252	650	5	0.72	0.9
	OSG65R900M	TO251S	650	5	0.72	0.9
	OSG65R900P	TO220	650	5	0.72	0.9
	OSG65R900F	TO220F	650	5	0.72	0.9
	OSG65R900FE	TO220F	650	5	0.72	0.9
	OSG65R760A	TO251	650	7	0.7	0.76
	OSG65R760D	TO252	650	7	0.7	0.76
	OSG65R7601	TO262	650	7	0.7	0.76
	OSG65R760F	TO220F	650	7	0.7	0.76
650 V	OSG65R580A	TO251	650	8	0.52	0.58
	OSG65R580D	TO252	650	8	0.52	0.58
	OSG65R580F	TO220F	650	8	0.52	0.58
	OSG65R580P	TO220	650	8	0.52	0.58
	OSG65R580DE	TO252	650	8	0.5	0.58
	OSG65R5801E	TO262	650	8	0.5	0.58
	OSG65R580FE	TO220F	650	8	0.5	0.58
	OSG65R460DZ	TO252	650	10	0.4	0.46
	OSG65R460FZ	TO220F	650	10	0.4	0.46
	OSG65R380A	TO251	650	11	0.35	0.38
	OSG65R380D	TO252	650	11	0.35	0.38
	OSG65R380F	TO220F	650	11	0.35	0.38
	OSG65R380P	TO220	650	11	0.35	0.38
	OSG65R380I	TO262	650	11	0.35	0.38
	OSG65R380K	TO263	650	11	0.35	0.38
	OSG65R340FZ	TO220F	650	12	0.3	0.34
	OSG65R290A	TO251	650	15	0.26	0.29
	OSG65R290D	TO252	650	15	0.26	0.29
	OSG65R290F	TO220F	650	15	0.26	0.29
	OSG65R290P	TO220	650	15	0.26	0.29
	OSG65R290K	TO263	650	15	0.26	0.29
	OSG65R290FE	TO220F	650	15	0.26	0.29

Class	Product Name	Package	Vdss(V)	Id(A)	Rdson_typ(Ω)	Rdson_max(Ω)
650 V	OSG65R220FZ	TO220F	650	18	0.18	0.22
	OSG65R220PZ	TO220	650	18	0.18	0.22
	OSG65R22012	TO262	650	18	0.18	0.22
	OSG65R200F	TO220F	650	20	0.16	0.2
	OSG65R200H	TO247	650	20	0.16	0.2
	OSG65R200K	TO263	650	20	0.16	0.2
	OSG65R200P	TO220	650	20	0.16	0.2
	OSG65R099F	TO220F	650	38	0.088	0.099
	OSG65R099H	TO247	650	38	0.088	0.099
	OSG65R099FZ	TO220F	650	38	0.09	0.099
	OSG65R099HZ	TO247	650	38	0.09	0.099
	OSG65R069H	TO247	650	53	0.05	0.069
	OSG65R069HZ	TO247	650	53	0.06	0.069
	OSG65R042H	TO247	650	78	0.038	0.042
	OSG65R041HZ	TO247	650	78	0.038	0.041
	OSG65R035H	TO247	650	80	0.032	0.035
	OSG65R038HZ	TO247	650	80	0.035	0.038
700V	OSG70R2K6A	TO251	700	2	2.3	2.6
	OSG70R2K6D	TO252	700	2	2.3	2.6
	OSG70R2K6F	TO220F	700	2	2.3	2.6
	OSG70R1K4A	TO251	700	4	1.25	1.4
	OSG70R1K4D	TO252	700	4	1.25	1.4
	OSG70RIK4F	TO220F	700	4	1.25	1.4
	OSG70RIKA	TO251	700	5	0.8	1
	OSG70RIKD	TO252	700	5	0.8	1
	OSG70RIKF	TO220F	700	5	0.8	1
	OSG70R750A	TO251	700	7	0.65	0.75
	OSG70R750D	TO252	700	7	0.65	0.75
	OSG70R750F	TO220F	700	7	0.65	0.75
	OSG70R750P	TO220	700	7	0.65	0.75
	OSG70R500A	TO251	700	10	0.4	0.5
	OSG70R500D	TO252	700	10	0.4	0.5
	OSG70R500F	TO220F	700	10	0.4	0.5
	OSG70R500P	TO220	700	10	0.4	0.5
	OSG70R350A	TO251	700	12	0.3	0.35
	OSG70R350D	TO252	700	12	0.3	0.35
	OSG70R350F	TO220F	700	12	0.3	0.35
	OSG70R350P	TO220	700	12	0.3	0.35
	OSG70R350k	TO263	700	12	0.3	0.35
800 V	OSG80R4KF	TO220F	800	1	3.4	4
	OSG80R4KA	TO251	800	1	3.4	4
	OSG80R4KD	TO252	800	1	3.4	4
	OSG80RIK4F	TO220F	800	4	1.1	1.4
	OSG80R1K4A	TO251	800	4	1.1	1.4
	OSG80R1K4D	TO252	800	4	1.1	1.4
	OSG80R1K4P	TO220	800	4	1.1	1.4
	OSG80RIKA	TO251	800	5	0.8	1
	OSG80RIKD	TO252	800	5	0.8	1
	OSG80R1KF	TO220F	800	5	0.8	1
	OSG80R 1 KP	TO220	800	5	0.8	1
	OSG80R650A	TO251	800	8	0.55	0.65
	OSG80R650D	TO252	800	8	0.55	0.65
	OSG80R650F	TO220F	800	8	0.55	0.65
	OSG80R650P	TO220	800	8	0.55	0.65
	OSG80R460F	TO220F	800	11	0.4	0.46
	OSG80R460P	TO220	800	11	0.4	0.46
	OSG80R4601	TO262	800	11	0.4	0.46
	OSG80R460K	TO263	800	11	0.4	0.46
	OSG80R290F	TO220F	800	17	0.26	0.29
	OSG80R290P	TO220	800	17	0.26	0.29
	OSG80R2901	TO262	800	17	0.26	0.29
	OSG80R290k	TO263	800	17	0.26	0.29
	OSG80R069H	TO247	800	47	0.06	0.069
900 V	OSG90R1K2A	TO251	900	5	1	1.2
	OSG90R1K21	TO262	900	5	1	1.2

Contents

- Overview

- GreenMos

- SFGMOS

> Mid-Voltage(60-200V) Low Qg MOSFET for Rectification and Motor Driver Applications

- User Cases

Original Invention of SFGMOS

SFGMOS

Patented Structure

Vertical SFG

SFGMOS Advantages

SFG-MOS

Lean process to enable high reliability and manufacturability for Rectification and Motor driver applications.

IFX Opt*mos


```
- Higher AA utilization
\square Better process control
# Larger current path (1.47X of original SGT technology)
L
L Larger current path for better EAS performance }->\mathrm{ stronger device
```

Oriental

Performance Comparison

Ronsp is smaller than Opt*mos

Higher efficiency than A*S

Reverse Recovery

Oriental
SEMICONDUCTOR

SFGMOS Product Portfolio

Platform	ProductName	Package	Vdss（V）	Id（A）	Rdson＿max（m）	
					Vgs＝10V	Vgs＝4．5V
SFGMOS 100V Family	SFG10R05G	DFN5＊6	100	100	5	6.5
	SFG10R08B	SOP8	100	14	8	10
	SFG10R08D	DPAK	100	70	8	10
	SFG10R08G	DFN5＊6	100	70	8	10
	SFG10R10B	SOP8	100	12	10	12
	SFG10R10D	DPAK	100	60	10	12
	SFG10R10G	DFN5＊6	100	60	10	12
	SFG10R12B	SOP8	100	10	12	14
	SFG10R12D	DPAK	100	50	12	14
	SFG10R12G	DFN5＊6	100	50	12	14
	SFG10R20B	SOP8	100	8	20	22
	SFG10R20D	DPAK	100	40	20	22
	SFG10R20G	DFN5＊6	100	40	20	22
	SFG10R26B	SOP8	100	6	26	30
	SFG10R26D	DPAK	100	30	26	30
	SFG10R26G	DFN5＊6	100	30	26	30
	SFG200N10P	TO220	100	200	2.5	
	SFG180N10P	TO220	100	180	3	
	SFG180N10K	TO263	100	180	3	
	SFG150N10P	TO220	100	150	4	
	SFG130N10P	TO220	100	130	5	
	SFG100N10P	TO220	100	100	8	
SFGMOS 150V Family	SFG15R19G	DFN5x6	150	50	19	21
	SFG15R75A	IPAK	150	20	75	88
	SFG15R75D	DPAK	150	20	75	88
	SFG15R75B	SO－8	150	20	75	88
	SFG110N15K	TO263	150	110	5	
	SFG100N15K	TO－263	150	100	7	
	SFG100N15P	TO－220	150	100	7	
	SFG80N15P	TO－220	150	80	10.5	
	SFG80N15K	TO－263	150	80	10.5	
SFGMOS 200V Family	SFG80N20K	TO263	200	80	9	
	SFG20R09K	TO263	200	80	9	
	SFG20R10D	DPAK	200	17	100	

SFGMOS ${ }^{\text {TM 命名规则（同步整流）}}$
SFGMOS ${ }^{\text {TM }}$ 命名规则（电机驱动）

SFG 10 R12 D F

Oriental Semiconductor
Cate＂Mostri－］
$\longrightarrow_{\text {Rdson Max }} \longrightarrow_{\text {Package Type }}$
Oriental Semiconductor
Semi－Floating－Gateto N
SFG 130 N 10 P F

Contents

- Overview

GreenMOS

- SFGMOS

User Cases

User Case－ 1

应用实例 B－10W 快充电源

系统名称：QC2．0 快速充电器峰值功率：10W

拓扑结构：Flyback
工作模式：断续工作模式（DCM）

图16．10W 快速充电器MOSFET驱动电路示意图

Ambient temperature： $25^{\circ} \mathrm{C}$

3A GreenMOS to replace

 competitor＇s 4A SJMOSGreenMOS achieves higher efficiency with even higher Rdson

GreenMOS extremely low switching loss compensates Ron loss

3A GreenMOS replaces 4A SJMOS with even higher efficiency due to GreenMOS extremely Low FOM that reduces dynamic loss．

Oriental
SEMICONDUCTOR

User Case－ 2

15 W 快 充
峰值功率： 15 W
拓扑结构：Flyback
工作模式：DCM

SFGMOS效率对比

By replacing A＊4294 with SFGMOS－ SFG10R12B and SFG10R10G，user achieves higher efficiency by 0.37% and 0.2% respectively．

Vendor	Part No．	BVdss (V)	$\mathrm{Vth}(\mathrm{V})$	Ron $(\mathrm{m} \Omega)$	Efficiency［\％］
$\therefore 2$, .04294	106	2.1	10.51	85.68
SFGMOS	SFG10R12B	113	2.14	9.33	85.88
SFGMOS	SFG10R10G	106.2	1.8	7.98	86.05

User Case－ 3

10 W 充电器

峰值功率： 10 W
拓扑结构：Flyback
工作模式：DCM

效 率 温 升 测 试

By replacing IFX SS07N70 with GreenMOS OSG70R1K4A，the Ron increases from 0.792Ω to 1.232Ω ． GreenMOS still achieves 0.31% efficiency improvement and $3.4^{\circ} \mathrm{C}$ temperature drop．

Vendor	Part No．	Rds（on）	Vth（V）	Avg．Efficiency［\％］	Avg．Temp［ ${ }^{\circ} \mathrm{C}$ ］
imineor	SS07N70	0.792Ω	3.065	82.19%	70.55
GreenMOS	OSG70R1K4A	1.232Ω	3.365	82.50%	67.15

User Case－ 4

24 W 适配器

```
峰值功率:24W
拓扑结构:Flyback
工作模式: CCM\DCM
```


效率温升测试

在此应用中，客户采用较高规格的两种不同封装形式的GreenMOSTM替代原 $4 N 60$ 的VDMOS，并去掉了散热片原4N －实测结果在替换后系统效率提升了
0.57% ，而温升比带散热片时阺了 0.57% ，而温升比带散热片时降低了
最多 $4.7{ }^{\circ} \mathrm{C}$ 。经过替换，客户不仅降低了物料的整体成本，还简化了组装的流程，提高良品率。同时产品性能和可靠性得到了显著提升。

平均效率：85．63\％平均温升 ： $68.1 \mathrm{C}^{\circ}$

平均效率：86．18\％平均温升：68．2C ${ }^{\circ}$

平均效率 ：86．20\％平均温升 ： $63.4 \mathrm{C}^{\circ}$

By replacing VDMOS 4 N60 with GreenMOS 60R1K2F and 60R1K2A， the efficiency improved by 0.57% and temperature dropped by $4.7^{\circ} \mathrm{C}$ even without heatsink．

Customer saves BOM cost by removing the heatsink．

Vendor	Part No．	Heatsink	Rds（on）	Vth $($ V $)$	Avg．Efficiency（\％）	Avg．Temp $\left({ }^{\circ} \mathrm{C}\right)$
VDMOS	4 N60	YES	2.180Ω	3.361	85.63%	$68.1^{\circ} \mathrm{C}$
GreenMOS	OSG60R1K2A	NO	0.989Ω	3.400	86.18%	$68.2^{\circ} \mathrm{C}$
GreenMOS	OSG60R1K2F	NO	0.982Ω	3.365	86.20%	$63.4^{\circ} \mathrm{C}$

ORIENTAL

User Case - 5

Operating Frequency : 80-300KHz, 20KW EV Charger

Compatible with multiple control topologies of high power applications

Oriental
SEMICONDUCTOR

Contact Us

Email: enquiry@orientalsemi.com
Tel : 0512-62534962
Add: 405-406, NW-20, Nanopolis, 99th Jinjihu Avenue, Suzhou Industrial Park. Suzhou China

